5 research outputs found

    Optimal charge scheduling of electric vehicles in solar energy integrated power systems considering the uncertainties

    Get PDF
    Nowadays, vehicle to grid (V2G) capability of the electric vehicle (EV) is used in the smart distribution network (SDN). The main reasons for using the EVs, are improving air quality by reducing greenhouse gas emissions, peak demand shaving and applying ancillary service, and etc. So, in this chapter, a non-linear bi-level model for optimal operation of the SDN is proposed where one or more solar based-electric vehicle parking lots (PLs) with private owners exist. The SDN operator (SDNO) and the PL owners are the decision-makers of the upper-level and lower-level of this model, respectively. The objective functions at two levels are the SDNO’s profit maximization and the PL owners’ cost minimization. For transforming this model into the single-level model that is named mathematical program with equilibrium constraints (MPEC), firstly, Karush–Kuhn–Tucker (KKT) conditions are used. Furthermore, due to the complementary constraints and non-linear term in the upper-level objective function, this model is linearized by the dual theory and Fortuny-Amat and McCarl linearization method. In the following, it is assumed that the SDNO is the owner of the solar-based EV PLs. In this case, the proposed model is a single-level model. The uncertainty of the EVs and the solar system, as well as two programs, are considered for the EVs, i.e., controlled charging (CC) and charging/discharging schedule (CDS). Because of the uncertainties, a risk-based model is defined by introducing a Conditional Value-at-Risk (CVaR) index. Finally, the bi-level model and the single-level model are tested on an IEEE 33-bus distribution system in three modes; i.e., without the EVs and the solar system, with the EVs by controlled charging and with/ without the solar system, and with the EVs by charging/discharging schedule and with/without the solar system. The main results are reported and discussed.fi=vertaisarvioitu|en=peerReviewed

    Bi-level model for operational scheduling of a distribution company that supplies electric vehicle parking lots

    Get PDF
    Nowadays, the presence of renewable energy resources (RERs), electric vehicle (EV) penetration, and the implementation of demand response (DR) programs are the main affecting factors in the operational scheduling of a distribution company (DISCO). By the new market participants such as parking lot (PL) owners in the DISCO, a bi-level framework can be created for modeling the distribution network. Therefore, in this paper, a new bi-level model is suggested for DISCO’s operational scheduling that involves technical and environmental terms in the objective function. The maximization of the profit of the DISCO owner and the PL owner are the objective functions in each level. These purposes depend on the customers’ load, the power purchased from the upstream network, the power exchanged with the PL owner (for the upper-level) and the power exchanged with the DISCO owner, as well as the EV owners (for the lower-level). Linearization of the model is carried out by applying the Karush–Kuhn–Tucker (KKT) condition and Fortuny-Amat and McCarl linearization approach. Furthermore, EVs’ and RERs’ uncertainties, as well as DR programs are modeled. Also, three types of risk are described including risk-seeker, risk-neutral, and risk-averse (with conditional value-at-risk (CVaR) index). For evaluation of the proposed model, it is applied to the IEEE 15-bus test system. Results show that by charging/discharging schedule of EVs and critical peak pricing program, the DISCO owner gains more profit. Also, the sensitivity analysis allows determining that the EV penetration, nominal power of RERs and customer involvement in the DR program directly affect the DISCO owner’s profit.© 2019 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    Risk-Based Bi-Level Model for Simultaneous Profit Maximization of a Smart Distribution Company and Electric Vehicle Parking Lot Owner

    No full text
    In this paper, the effect of renewable energy resources (RERs), demand response (DR) programs and electric vehicles (EVs) is evaluated on the optimal operation of a smart distribution company (SDISCO) in the form of a new bi-level model. According to the existence of private electric vehicle parking lots (PLs) in the network, the aim of both levels is to maximize the profits of SDISCO and the PL owners. Furthermore, due to the uncertainty of RERs and EVs, the conditional value-at-risk (CVaR) method is applied in order to limit the risk of expected profit. The model is transformed into a linear single-level model by the Karush–Kuhn–Tucker (KKT) conditions and tested on the IEEE 33-bus distribution system over a 24-h period. The results show that by using a proper charging/discharging schedule, as well as a time of use program, SDISCO gains more profit. Furthermore, by increasing the risk aversion parameter, this profit is reduced

    Investigation of Distribution Transformer Loss of Life in Electric Vehicles Parking Lot Integrated System

    No full text
    Nowadays, the operation of the smart distribution system (SDS) is more complicated with the penetration of electric vehicles (EVs), due to EVs' uncertainties as well as the capability of vehicle-to-grid (V2G). On the other hand, distribution transformers (DTs) which have to meet the demand of EVs are one of the essential components of SDS; indeed, their failure can lead to irreparable damage. The cause of most of these failures is overloading and high ambient temperature. The overloading increases the temperature of the various parts of the DTs, especially hot spot temperature (HST). Increasing this temperature reduces the nominal life of the DTs. With a high number of EVs in the future, and as a consequence high energy demand which has not been taken into account in proper operating program, it could lead to the overloading of DTs. So, in this paper, the loss of life (LOL) of a DT that feeds the residential loads and an EV parking lot (EV PL) is investigated. The maximization of the profit of the distribution system operator (DSO) is considered in two different parts i.e. with/without the appropriate operation coefficient (OC) of DT. Also, two different scenarios are applied i.e. charging mode (CM) of EVs and charging/discharging mode (CDM) of EVs. The results show that if the OC is not properly considered, the LOL of the transformers will be significantly high, implying a higher total ownership cost.© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed
    corecore